Диаграмма цветности

Опубликовано 30.04.2010 Ведущий Евгений Глазков

Рассмотрим смешивание цветов с математической точки зрения как некое геометрическое построение. Цвет можно представить вектором в трехмерном пространстве, где по трем осям отложены величины a, b и с, т. е. данному цвету соответствует точка в пространстве. Точка, соответствующая другому цвету, у которого компоненты равны а', b' и с', расположена в другом месте. Как мы уже знаем, сумма двух цветов есть новый цвет, который получается векторным суммированием первых двух. Диаграмму можно упростить и изобразить все на плоскости, если воспользоваться следующим наблюдением: возьмем свет определенной окраски и просто удвоим коэффициенты а, b и с, т. е. все компоненты увеличим, а соотношение между ними оставим неизменным; тогда получится свет той же самой окраски, но более яркий. Поэтому можно привести любой свет к одной и той же интенсивности и затем спроектировать все построение в трехмерном пространстве на плоскость, как это сделано на рисунке. Отсюда следует, что любой цвет, полученный смешением двух заданных цветов, изображается точкой, лежащей на линии, которая соединяет оба выбранных цвета. Любой цвет состоит из некоторых количеств красного, желтого, синего и т. д. по всем цветам спектра. Зная, как составлены спектральные тона из трех основных цветов, можно вычислить необходимую пропорцию основных цветов и для какого угодно цвета. Поэтому, определив цветовые коэффициенты всех спектральных тонов по отношению к трем основным цветам, легко составить полную таблицу смешения цветов.