Опыт Юнга

Опубликовано 19.02.2011 Ведущий Антон Степанов

До открытия принципа корпускулярно-волнового дуализма света среди ученых не было единого мнения о его природе. Одни утверждали, что свет – это поток частиц, корпускул, которые позже назвали фотонами. С развитием науки появилась теория о волновой природе светового излучения. Впоследствии открылось, что оба варианта верны. Свет ведет себя и как поток частиц, чему существует множество подтверждений, таких как фотоэффект или эффект Комптона. Так и как волна, доказательством чему является дифракция и интерференция.
Уже в 1803 году Томас Юнг провел знаменитый эксперимент, который приблизил науку к разгадке феномена.
Эксперимент достаточно прост. Имеется источник света. За ним Юнг использовал экран А, с узкой щелью. После прохождения света от источника через эту щель его можно считать точечным. За первым экраном расположен второй – экран B, уже с двумя щелями, расположенными рядом друг с другом на расстоянии d. Для наблюдения интерференции, необходимо, чтобы источники интерферирующих волн были когерентными. Поскольку изначально свет в эксперименте поступает от одного источника, то проходя через два отверстия экрана B мы получаем два источника когерентного света S1 и S2, т.е. сами щели. Этот метод называется методом деления волнового фронта. Свет этих источников интерферирует, результат можно наблюдать на экране Э.
Что мы ожидаем увидеть на этом экране, исходя из корпускулярной теории света? Наверное, ничего, поскольку можно ожидать, что частицы, двигаясь прямолинейно, пройдут сквозь отверстие первого экрана и образуют пятно света между двумя отверстиями второго. Или, если бы первый экран отсутствовал, то можно было бы говорить о двух полосах света на экране Э. Так бы и случилось, будь прорези в экранах достаточно широкими. Но, что же увидел Юнг? В области, где волны перекрываются, образуется чередование полос с максимумом и минимумом интенсивности света. Причем, максимум яркости окажется там, где согласно корпускулярной теории, яркость должна быть практически нулевой.
Интенсивность в произвольной точке P экрана, лежащей на расстоянии x от нуля, определяется оптической разностью хода дельта, т.е. разницей между расстояний S2 и S1 от вторичных источников света до самой точки P. Используя геометрию, учитывая расстояние l между экранами B и Э, рассчитываем дельта для вакуума. Отсюда находим расстояния X для максимумов и минимумов интенсивности, где лямбда – длина волны. И расстояние дельта X – между соседними максимумами и минимумами. Нужно заметить, раз эта величина обратно пропорциональна расстоянию между щелями d, то при его увеличении, приближении к расстоянию между экранами l, отдельные полосы становятся неразличимыми. Интересно также заметить, что измеряя дельта Х мы можем вычислить длину волны света – лямбда.
Расстояние между двумя соседними максимумами называется расстоянием между интерференционными полосами, а расстояние между соседними минимумами – шириной интерференционной полосы. Главный максимум будет соответствовать m=0 и будет находиться центре, а далее, в разные стороны будут чередоваться максимумы первого, второго порядков и т.д.
Итак, мы видим, что свет ведет себя как волна. Но напомню, что это происходит только если ширина отверстий сравнима с длиной его волны. Когда ширина прорезей увеличивается, освещенность экрана уменьшается и интерференции исчезают.